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The quantum phase transition �QPT� of the one-dimensional �1D� quantum compass model in a transverse
magnetic field is studied in this paper. An exact solution is obtained by using an extended Jordan and Wigner
transformation to the pseudospin operators. The fidelity susceptibility, the concurrence, the block-block en-
tanglement entropy, and the pseudospin correlation functions are calculated with antiperiodic boundary con-
ditions. The QPT driven by the transverse-field only emerges at zero field and is of the second order. Several
critical exponents obtained by finite-size scaling analysis are the same as those in the 1D transverse-field Ising
model, suggesting the same universality class. A logarithmic divergence of the entanglement entropy of a block
at the quantum critical point is also observed. From the calculated coefficient connected to the central charge
of the conformal field theory, it is suggested that the block entanglement depends crucially on the detailed
topological structure of a system.
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I. INTRODUCTION

The quantum compass model has been studied exten-
sively in recent years due to the possible long range orbital
order and the quantum phase transitions �QPTs�.1–8 First, the
model could be used to describe the Mott insulators with
orbit degeneracies. It depends on the lattice geometry and
belongs to the low energy Hamiltonian originated from the
magnetic interactions in Mott-Hubbard systems with the
strong spin-orbit coupling.9,10 For simplicity, the one-
dimensional �1D� quantum compass model is regarded as the
coupling along one of bonds which shows an Ising type, but
different spin components are active along other bond direc-
tions. It is exactly the same as the 1D reduced Kitave
model.11–14 The symmetry of the pseudospin Hamiltonian is
much lower than SU�2�. It is shown in the numerical results
that the eigenstates are at least twofold degenerate or highly
degenerate.1,5 Recently, because of degeneracy in the ground
state �GS�, the protected qubit can be implemented, a scal-
able and error-free scheme of the quantum computation can
be designed in this simple model.3

To shed some insights into this model, a exact solution is
clearly desirable. By applying Jordan and Wigner transfor-
mation to the pseudospin operators, Brzezicki et al. were
able to map it into a spinless fermion model and determine
the spectrum exactly.5 More recently, the exact solution of
1D period-two compass model has also been obtained by the
present authors and a collaborator with a slightly different
method.7 In order to be useful for quantum information, the
GS must be protected from local perturbations, but the spec-
trum for h=0 is gapless in the thermodynamic limit. The
extension to finite fields is a crucial step in the search for
systems supporting naturally robust quantum information.15

To the best of our knowledge, the 1D compass model in the
transverse magnetic field has not been studied so far, which
may be also of fundamental significance. The symmetry of
the system is further broken when the transverse magnetic

field is applied. The behavior of the energy gap may be
changed around the critical point in the thermodynamical
limit and the degeneracy in the GS may be lifted, therefore
the nature of the QPT may be altered in the presence of the
transverse magnetic field. In order to address these questions,
an exact solution to the field version is also clearly called for.

Due to the recent progress in quantum information sci-
ence, some concepts in quantum information theory such as
the fidelity, the fidelity susceptibility �FS�, and the quantum
entanglement have been extensively used to identify the
QPTs in various many-body systems from the perspective of
the GS wave functions.16–24 Recently, it is proposed that the
fidelity approach is a valuable tool to investigate phases lack-
ing a clear characterization in terms of local order
parameters.25,26 With these effective tools and the finite-size
scaling analysis of the FS, one can identify the universality
class of the QPT in various models.27,28 Quantum entangle-
ment is one of the most striking consequences of quantum
correlation in many-body systems, and is recognized to be
resource that enables quantum computing and
communication.29 It has shown a deep relation with the QPT
�Refs. 20, 30, and 31�. The entangled degree between any
two nearest-neighbor particles keeps the same for the trans-
lational symmetry and its derivative may play the role of an
order parameter to characterize QPT at the critical point. In
the context of QPTs, the quantum entanglement has been the
subject of considerable interests in the various
models.20,21,32–34

In this paper, we study the 1D compass model in a trans-
verse magnetic field for the first time. The exact solutions are
obtained by using the method of mapping into a case with
plural spin sites.35 The GS fidelity, the FS, the concurrence,
and the block-block entanglement entropy are calculated.
The behaviors of the spin correlations function are also
given. The paper is organized as follows. In Sec. II, we de-
scribe the model and the scheme to obtain the exact solution
in detail. The calculations of the fidelity, the concurrence and
the block-block entanglement entropy are presented in Sec.
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III, where the scaling analysis is also performed. The corre-
lation functions are analyzed in Sec. IV. The conclusion is
given in the last section.

II. MODEL HAMILTONIAN AND EXACT SOLUTION

The 1D XX-YY model in a transverse magnetic field can
be regarded as the structure of two pseudospin sites inside a
unit cell. The Hamiltonian is given by5

H = − J�
n=1

N�

�2,n
x �1,n+1

x − J�1 − ���
n=1

N�

�1,n
x �2,n

x − J��
n=1

N�

�1,n
y �2,n

y

−
h

2�
n=1

N�

��1,n
z + �2,n

z � , �1�

where N=2N� is the total number of the sites. Figure 1
shows the structure of interactions in Eq. �1�.

For �=1, it becomes the 1D compass model in a trans-
verse magnetic field,

H = − J�
n=1

N�

�2,n
x �1,n+1

x − J��
n=1

N�

�1,n
y �2,n

y −
h

2�
n=1

N�

��1,n
z + �2,n

z � ,

�2�

where J denotes the strength of the nearest-neighbor interac-
tion, � is the coupling parameter, �s,n

x�y,z� are the Pauli matrix
on cell n with site s=1,2, N=2N� is the total number of the
sites, and h is the applied magnetic field in the z direction.
For convenience, the number of pseudospins N� is chosen to
be even, and a periodic boundary conditions �PBCs� for
pseudospins is employed, i.e., �1,N�+1=�1,1. Note that the 1D
compass model without the magnetic field is just a special
case of the alternating XY model.36

In order to diagonalize Hamiltonian �2�, we use the exten-
sion of the Jordan and Wigner transformation for the case
with plural spin sites.35 An up-spin state is transformed to a
one-fermion state, and a down-spin state to a zero-fermion
state. The explicit mapping between spin operators and fer-
mionic operators are given by

�2,n
x �1,n+1

x = �a2,n
† − a2,n��a1,n+1

† + a1,n+1� ,

�1,n
y �2,n

y = − �a1,n
† + a1,n��a2,n

† − a2,n� ,

�s,n
z = 2as,n

† as,n − 1. �3�

Here we denote the fermion creation operator with site num-
ber s and cell number n by as,n

† . Then Hamiltonian �2� is
transformed into the following form:

H = − J�
n=1

N�

�a2,n
† a1,n+1

† + a2,n
† a1,n+1 − a2,na1,n+1

† − a2,na1,n+1�

− J��
n=1

N�

�− a1,n
† a2,n

† + a1,n
† a2,n − a1,na2,n

† + a1,na2,n�

− h�
n=1

N�

�a1,n
† a1,n + a2,n

† a2,n� + hN�. �4�

The Fourier transformation of the fermion operators gives
as,n= �1 /N��1/2�pe−ipnas�p�. For convenience, the antiperi-
odic boundary condition �ABC� a1,N�+1=−a1,1 is employed
for the fermion operators. After these transformations, the
new Hamiltonian H� now reads

H� = − J�
p

�e−ipa2
†�p�a1

†�− p� + e−ipa2
†�p�a1�p�

− eipa2�p�a1
†�p� − eipa2�p�a1�− p�� − J��

p

��− a1
†�p�a2

†�− p� + a1
†�p�a2�p�

− a1�p�a2
†�p� − a1�p�a2�− p�� − h�

p

�a1
†�p�a1�p�

+ a2
†�p�a2�p�� + hN�, �5�

where p is the wave number in ABC which takes such values
as p= � j� /N� , �j=1,3 , . . . ,N�−1�. The operators as

†�p�
and as�p� are the creation and annihilation operators of the
fermion with site numbers s and wave number p, which sat-
isfy the following anticommutation relations,

�as�p�,at
†�q�� = �s,t�p,q,

�as�p�,at�q�� = 0, �as
†�p�,at

†�q�� = 0. �6�

Then we find that the Hamiltonian H� is the sum of the
following independent operators W�p��,

W�p�� = − J�e−ip�a2
†�p��a1

†�− p�� + e−ip�a2
†�p��a1�p��

− eip�a2�p��a1
†�p�� − eip�a2�p��a1�− p��

+ eip�a2
†�− p��a1

†�p�� + eip�a2
†�− p��a1�− p��

− e−ip�a2�− p��a1
†�− p�� − e−ip�a2�− p��a1�p���

− J��− a1
†�p��a2

†�− p�� + a1
†�p��a2�p�� − a1�p��a2

†�p��

− a1�p��a2�− p�� − a1
†�− p��a2

†�p�� + a1
†�− p��a2�− p��

− a1�− p��a2
†�− p�� − a1�− p��a2�p���

− h�a1
†�p��a1�p�� + a2

†�p��a2�p�� + a1
†�− p��a1�− p��

+ a2
†�− p��a2�− p��� , �7�

where p�= j� /N� �j=1,3 , . . . ,N�−1�. Note that
�W�p�� ,W�q���=0, so we can solve Hamiltonian �5� in the
space of p�.

The parity in the Hilbert space of W�p�� is conserved,
therefore subspace with the even parity can be easily con-
structed in terms of the following eight basis vectors

FIG. 1. �Color online� The odd �1,n ;2 ,n� and the even
�2,n ;1 ,n+1� bonds are denoted in the regions of black dashed
rectangle and blue dotted ellipse, respectively.
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�0	, a1
†�p��a1

†�− p���0	, a1
†�p��a2

†�− p���0	 ,

a2
†�p��a1

†�− p���0	, a2
†�p��a1

†�− p���0	, a1
†�p��a2

†�p���0	 ,

a1
†�− p��a2

†�− p���0	

and

a2
†�p��a1

†�p��a2
†�− p��a1

†�− p���0	 .

While the subspace with the odd parity is obtained by com-
bining the following 8 basis vectors

a1
†�p���0	, a2

†�p���0	, a1
†�− p���0	, a2

†�− p���0	 ,

a1
†�− p��a2

†�p��a1
†�p���0	, a2

†�− p��a2
†�p��a1

†�p���0	 ,

a1
†�p��a2

†�− p��a1
†�− p���0	

and a2
†�p��a2

†�−p��a1
†�−p���0	. The parity of subspaces deter-

mines the boundary conditions. Indeed, the Bogoliubov
vacuum has even �odd� numbers of a quasiparticles for ABC
�PBC�.5 For ABC, nonzero elements of the 8�8 Hermit ma-
trix �even parity� for the reduced Hamiltonian W�p�� are

Wi,i = − 2h for 1 	 i 	 7, W8,8 = − 4h ,

W2,3 = W4,5 = − Je−ip� − J� ,

W1,3 = W4,8 = Je−ip� + J� ,

W2,4 = W3,5 = W1,4 = W3,8 = − Jeip� − J� . �8�

The eigenvalues for this matrix are then easily derived


�1,2��p�� = − 2h � 2J��h/J�2 + 1 + 2� cos�p�� + �2�1/2,


�3,4��p�� = − 2h � 2J�1 + 2� cos�p�� + �2�1/2,


�5–8��p�� = − 2h . �9�

The spectral functions ��p�� are readily obtained

��1,2��p�� = � 2J��h/J�2 + 1 + 2� cos�p�� + �2�1/2,

��3,4��p�� = � 2J�1 + 2� cos�p�� + �2�1/2. �10�

Actually, Hamiltonian �5� can be decomposed as

H� = �
p�

� Hp�
�s��, �11�

where Hp�
�s��
��s���p���p�

†�s���p�
�s�� �s�=1,2 ,3 ,4� with �p�

�s�� the
operator of fermionic quasiparticles, and the corresponding

eigenvectors are �s���p��=�p�
†�s���0	. Then the GS energy and

wave function are given by

EG = − �
p�

2J��h/J�2 + 1 + 2� cos�p�� + �2�1/2, �12�

�0	 = �
p�

�1��p�� . �13�

It should be stressed here that Eqs. �12� and �13� are valid for
any value of h. Note also that the exact spectrum is the same
as that obtained by Brzezicki et al. for h=0 using a different
method.5

The energy gap can be readily obtained as �=2J��h /J�2

+1�2�+�2�1/2−2J���1�. It does not disappear in the pres-
ence of the transverse-field even in the thermodynamic limit.
The QPT driven by the transverse-field will occur at ��
= �1, h=0�, which shows the second-order nature, similar
to the QPT driven by interaction parameters.8

For completeness, we will also briefly discuss the spectra
based on PBC. For PBC, we need to solve the Hamiltonian
�7� in the odd numbers of a quasiparticles subspace. The
spectral functions are given by

��1,2��p�� = − J��h/J�2 + 1 + 2� cos�p�� + �2�1/2

− J�1 + 2� cos�p�� + �2�1/2,

��3,4��p�� = − J��h/J�2 + 1 + 2� cos�p�� + �2�1/2

+ J�1 + 2� cos�p�� + �2�1/2,

��5,6��p�� = J��h/J�2 + 1 + 2� cos�p�� + �2�1/2

− J�1 + 2� cos�p�� + �2�1/2,

��7,8��p�� = J��h/J�2 + 1 + 2� cos�p�� + �2�1/2

+ J�1 + 2� cos�p�� + �2�1/2. �14�

Note that p�=0 and p�=� in ABC must be treated separately
and carefully. It is helpful to write down explicitly the spec-
tra for N=4 pseudospin sites in the real space

��1,2� = � 2J��h/J�2 + 1 + �2�1/2,

��3,4� = � 2J�1 + �2�1/2,

��5–8� = 0,

��9,10� = J� + J � J��h/J�2 + 1 − 2� + �2�1/2,

��11,12� = J� − J � J��h/J�2 + 1 + 2� + �2�1/2,

��13,14� = − J� − J � J��h/J�2 + 1 − 2� + �2�1/2,

��15,16� = − J� + J � J��h/J�2 + 1 + 2� + �2�1/2, �15�

which include the spectra for both ABC ���1–8�� and PBC
���9–16��. The GS energy for PBC can be written as

EG = �
p��0 or �

− 2J��h/J�2 + 1 + 2� cos�p�� + �2�1/2

+ min���s��� , �16�

where s�=9–16, and p�=2j� /N� , �j=1,2 , . . . , N�
2 −1�.

The validity of Eq. �16� is also confirmed by comparing
with the direct numerical diagonalization of N=8 pseudospin
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sites in real space. In Fig. 2, we present the numerical GS
energy from PBC and the results from Eq. �16� as well. It is
clear that the present analytical results for the GS energy are
in excellent agreement with the numerical ones.

In order to show the correctness of the present method,
we extend to study the celebrated 1D Ising model in a trans-
verse magnetic field, which Hamiltonian reads

H = − J�
n=1

N�

�2,n
x �1,n+1

x − J�
n=1

N�

�1,n
x �2,n

x +
h

2�
n=1

N�

��1,n
z + �2,n

z � .

�17�

With ABC, the exact GS energy is derived as

EG = − �
p
�h2 + 4J2 � 4Jh cos

p

2
1/2

, �18�

where p= j� /N� , �j=1,3 , . . . ,N�−1�, and the number of to-
tal sites is N=2N�. For PBC, the GS energy is written as

EG = − �
p�0 or �

�h2 + 4J2 � 4Jh cos
p

2
1/2

+ min���s��� ,

�19�

where min���s���=−2J− �4J2+h2�1/2 �2J�h�0�, and p
=2j� /N� , �j=1,2 , . . . , N�

2 −1�. Therefore, we recover the
well-known results obtained previously in this model.37 It is
observed that the components in the GS energy are different
for the 1D Compass and Ising models in the transverse mag-
netic fields for both PBC and ABC. It should be pointed out
that although the GS in PBC and ABC are slightly different
in the finite-size system, they are identical in the thermody-
namic limit and the essential features in finite size are also
not altered qualitatively. Without loss of generality, we will
take ABC in the following discussion.

III. FINITE-SIZE SCALING ANALYSIS OF FIDELITY
AND ENTANGLEMENT

The GS fidelity and entanglement emerged from quantum
information science have been used in signaling the
QPTs.16–18,20,26–28,30,31,34 We perform finite-size scaling
analysis of these two quantities to study the criticality of the
present model. By using the exact GS wave function ob-
tained in Eq. �13�, the GS fidelity is given by

F��,��� = ��0����0�� + ���	� , �20�

where �� is a small quantity ���=10−4 is taken in the
present calculation�. Its susceptibility can be written as

�F 
 lim
��→0

− 2 ln F

��2 . �21�

We calculate the GS fidelity in the �� ,h� plane and the FS
as a function of the transverse field h for �=1.0. The numeri-
cal results are presented in Figs. 3 and 4. The absence of the
sudden drop to zero of the fidelity excludes the level crossing
around the critical point ��= �1.0, h=0�. In the Kosterlitz-
Thouless phase transition, no singularity occurs at the critical
point,18 so a second-order QPT is highly suggested when
driving the magnetic field, which will be confirmed in the
following finite-size scaling analysis.

Next, we illustrate the scaling behavior of average FS
�F /N�. The finite-size scaling ansatz for the average FS to
analyze the second-order QPT takes the form27,28

�F
max − �F

�F
= f�N���h − hmax�� , �22�

where � is the critical exponent of the correlation length and
f�x� is the scaling function. This function should be universal
for large N� in the second-order QPT. As exhibited in Fig. 4,
the FS reaches a maximum point at a certain position hmax. It
can be observed in Fig. 5 that the rescaled FS for larger
system sizes tends to collapse onto one single curve if ad-
justing the critical exponent �=1.00�0.02. The scaled aver-
age FS at the maximum point as a function of N� in log-log
scale are presented in the inset of Fig. 5. A power-law be-

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−9.5

−9

−8.5

−8

−7.5

−7

−6.5

−6

−5.5

−5

−4.5

α

E
G

S

The results in real space
The results based on Eq. (16)

FIG. 2. �Color online� GS energy as the function of the param-
eter � for h=0.8, J=1.0, and N=8 with PBC.

FIG. 3. �Color online� Fidelity Fmin=min�F�h ,h+�h� ,F�� ,�
+���� in the �−h plane for N�=100 and J=1.0 with ABC. The
second-order QPT points are obviously found at ��=−1.0, h=0�
and ��=1.0, h=0�.
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havior �F
max�N�� is observed in the large N� regime and the

finite-size exponent extracted from the curve is �=2. Both
values of exponents � and � in the present model are the
same as those obtained in the 1D transverse-field Ising
model.18

We then turn to the quantum entanglement of this system.
Recently, the concept of concurrence is usually adopted as
the measure of the local entanglement in spin − 1

2 systems.
The definition of concurrence is given by C�i , j�
=max�r1�i , j�−r2�i , j�−r3�i , j�−r4�i , j� ,0�, where r��i , j� are
the square roots of the eigenvalues of the product matrix R
=�ij�̃ij in descending order.20,30,31 The spin flipped matrix �̃ij
is defined as �̃ij = ��y � �y��ij

� ��y � �y�. The �ij is the density
matrix for a pair of qubits from a multiqubit state and has the
following form:

�ij =
1

4 �
�,�=0

3

p���i
�

� � j
�. �23�

The coefficients are determined by the relations

p�� = tr��i
�� j

��ij� = ��i
�� j

�	 . �24�

According to the reflection symmetry and the global
phase flip symmetry, considering the Hamiltonian being real,
the only nonzero coefficients in Eq. �24� are p00, p11, p22, p33,
p03, and p30. Because the density matrix must have trace
unity, so p00=1. The numerical results for the concurrence as
a function of h for various coupling coefficient � are shown
in Fig. 6. It is evident that the concurrence gradually in-
creases as enhancing �. The minimum of concurrence and a
cusp of the first derivative of the concurrence occurs right at
the critical point ��=1.0, h=0�.

Furthermore, we calculate the block-block entanglement
both near and at the quantum critical point21,38–40 to show the
connection with entropy of vacuum in the classical confor-
mal field theory in the present model. The GS in our model
can be completely characterized by the expectation values of
the two-point correlations �am

† an	= fm,n, where m or n is pseu-
dospin site �e.g., as,n→a2�n−1�+s�. Any other expectation
value can be expressed through Wick’s theorem. By elimi-
nating the rows and columns in matrix F= fmn , �m ,n
=1,2 , . . . ,N�, which are corresponding to pseudospins that
do not belong to the block, the correlation matrix FL of the
state �L is obtained. The corresponding von Neumann en-
tropy then takes the form

SL = �
n=1

L

�− �1 − 
n�log2�1 − 
n� − 
n log2 
n� , �25�

where 
n is the n-th eigenvalue of the correlation matrix FL.
The numerical results for SL as a function of the block size L
are presented in Fig. 7. A logarithmic divergence of SL at the
quantum critical point is observed, while noncritical en-

FIG. 4. FS versus h for J=1.0 and �=1.0 with ABC.

FIG. 5. Finite-size scaling of the average FS according to Eq.
�22� for hmax=0, J=1.0 and �=1.0 for various system sizes N�
=100, 200, 300, and 400. The inset exhibits the scaling of the maxi-
mum of the average FS as the function of log2�N�� at the critical
point ��=1.0, h=0�.

FIG. 6. �Color online� The concurrence C1,2 �left� and the de-
rivative ��C1,2 �right� versus h for �=0.6, 1.0, and 1.4, J=1.0, and
N�=256.
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tanglement is characterized by a saturation of SL for larger L.
The coefficient is connected to the central charge of the clas-
sical conformal field theories,

limL→� SL �
c

3
log2 L , �26�

where c=1 in the compass model. The value of c is different
from that in 1D transverse Ising chain �c=0.5�, but the same
as in 1D XX chain without magnetic field.21 It may follow
that the block entanglement depends crucially on the detailed
topological structure of a system.

IV. PSEUDOSPIN CORRELATION FUNCTIONS
AND MAGNETIZATION

To explore the essential properties of QPT, we will calcu-
late two GS pseudospin correlations ��2,1

x �1,2
x 	 and ��1,1

y �2,1
y 	.

The numerical results for these two correlation functions ver-
sus � for different magnetic fields are presented in Fig. 8. We
observe that ��1,1

y �2,1
y 	 is a odd function of �, while ��2,1

x �1,2
x 	

an even one of �. The crossing points of ��2,1
x �1,2

x 	 and
��1,1

y �2,1
y 	 curves deviate �=1 in the presence of transverse-

field. The numerical results indicate that ��2,1
x �1,2

x 	 is sensi-
tive to the external magnetic field in the range of
�� �−1,1�, but insensitive in the other regions.

As done in Ref. 5, we also calculate the distance depen-
dence of the pseudospin correlator ��2,1

x �1,2+r
x 	 with ABC for

different size in terms of Hamiltonian �1�. As shown in Fig. 9
that the correlators at �→1 decay in an algebraic way in
large r regime, indicating a divergent correlation length
when approaching the critical points. A power law behavior
��2,1

x �1,2+r
x 	�r−� is obtained with �=1.00�0.03, indicating

a second-order QPT.
Finally, we calculate the pseudospin magnetization ��z	

= ��1,n
z 	+ ��2,n

z 	 and the magnetic susceptibility �=���z	 /�h.

The magnetization ��z	 as a function of the transverse-field h
for �=1.0 and N�=256 is exhibited in Fig. 10. The magnetic
susceptibility ���h�−��hc�� versus �h−hc� shows a power-law
behavior. The exponent � is estimated to be 1.78�0.05 by
the slop. It is interesting that it is very close to the magnetic
susceptibility exponent 1.75 in two-dimensional �2D� classi-
cal Ising model. According to Eq. �17�, we can also plot the
similar scaling curve for 1D transverse-field Ising model,
which is given in the inset of Fig. 10 as well. An excellent
agreement for the slop in the critical regime is clearly shown.

V. SUMMARY AND DISCUSSION

By using the method of mapping into a case with plural
spin sites, we obtain the exact GS energy and the GS wave
function of 1D compass model in a transverse magnetic field.
The pseudospin liquid disordered ground state is the univer-
sal features in the 1D compass model. Meanwhile, we ob-

FIG. 7. The block-block entanglement SL versus L for J=1.0 in
the quantum critical point ��=1.0, h=0� and the noncritical region
�=1.2 with ABC. The inset displays a logarithmic divergence for
large L at the critical point.

FIG. 8. The correlation functions with ABC. The parameters are
taken as J=1.0, N�=256, and h=0.1, 0.3, and 0.5, respectively.
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FIG. 9. �Color online� Distance dependence of ��2,1
x �1,2+r

x 	 spin
correlator at �→1 for different system size. The parameters are J
=1.0, h=0, and �=1.0.
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serve the second-order QPTs at ��= �1, h=0�. The energy
gap � will survive even in the thermodynamic limit for h
�0. It is useful for supporting naturally robust quantum in-
formation. The fidelity, the FS, the concurrence, and the
block-block entanglement entropy are also calculated in
terms of the obtained exact GS wave functions. The finite-
size scaling analysis suggests the second-order QPT occurs

by driving the transverse field. The pseudospin correlation
functions, the distance dependence of the pseudospin corr-
elators and the magnetization are also calculated. It is ob-
served that the distance dependence of ��2,1

x �1,2+r
x 	 correlator

displays a divergent correlation length when approaching the
critical points. The obtained scaling exponents are nearly the
same as those in the 1D transverse-field Ising model, sug-
gesting that these two models share the same universality
class. The scaling exponent c=1.0 of the block-block en-
tanglement entropy is the same as the critical XX chain with
no magnetic field, which shows the different topological
structure from the quantum Ising model. For the 2D compass
model with a transverse-field, the degeneracy of GS is re-
moved because of the destruction of the symmetries. It is
expected that the QPT becomes weaker and the first-order
QPT is unlikely.
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